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A theoretical analysis is made of the transient Ekman layer of a rapidly rotating
compressible fluid. In the initial state, both the fluid and the disk are in equilibrium in
isothermal rigid-body rotation. Flow is initiated by imposing a mechanical/thermal
disturbance on the rotating disk. By making detailed examinations of the energy
balance in the Ekman layer, the energy transfer mechanisms are delineated. Two
distinctive transient energy transfer mechanisms are identified: (i) the one-dimensional
energy diffusion process in the axial direction, and (ii) the conventional Ekman layer
flow which is similar to that of an incompressible fluid. The usefulness of a particular
grouping of flow variables, which is termed the energy flux content, is emphasized. The
major distinctions between compressible and incompressible fluids are ascertained.
This analytical endeavour clarifies the features unique to a compressible rotating
flow. A unified view is constructed to encompass the previously published theoretical
findings which had been presented in a piecemeal fashion.

1. Introduction
Transient flow of a compressible fluid over a rotating disk of infinite radius is

considered. At the initial state, both the fluid and the disk move in unison and in
rigid-body rotation about the central axis, which, for convenience, is aligned in the
vertical direction (z∗). The fluid is in isothermal equilibrium with the disk at constant
temperature T ∗

00. To this initial state, a small thermal and/or mechanical disturbance
is added to the rotating disk. The disturbance is represented as an arbitrary function
of time and radial coordinate. The depiction of the subsequent fluid flow, in response
to this externally prescribed disturbance, constitutes the theme of the present paper.
It is stressed here that emphasis is placed on the transient features which are peculiar
to a compressible fluid.

The present problem addresses a flow element basic to a more realistic situation
involving a finite cylindrical container of height H ∗ and radius r0H

∗. The bottom
endwall disk rotates steadily with rotation rate Ω∗. The representative Ekman number
E[≡ µ/ρ∗

00(r0H
∗)Ω∗H ∗2] is small, where ρ∗

00(r0H
∗) denotes the fluid density at the

periphery and µ is the coefficient of shear viscosity. The present paper provides
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descriptions of energy transfers in the Ekman layer in the central region, for E � 1,
apart from negligibly small zones near the axis and the cylindrical sidewall.

Knowledge of the compressible Ekman layer under discussion here is relevant
to the analyses of gas centrifuges (Sakurai & Matsuda 1974). Under an extremely
rapidly rotation of the system, i.e. H ∗Ω∗2/g � 1, where g denotes the gravitational
acceleration, the conventional Boussinesq-fluid approximation is no longer applicable.
In this situation, a formulation based on compressible-fluid flow is needed. In a
pioneering paper, Sakurai & Matsuda (1974) analysed the thermally driven flow of a
compressible fluid in a finite closed container. This study was subsequently extended
and modified (e.g. see Conlisk 1985). A new approach was undertaken by Wood &
Morton (1980) and by Barbarsky, Herbst & Wood (2002) based on Onsager’s pancake
model. They noted that, in rapidly rotating compressible fluids, much of the fluid
mass is concentrated near the cylindrical sidewall. These accounts also emphasized
the importance of compressible-fluid Ekman layer flows.

The prior studies on transient Ekman layers have been concentrated on the more
familar case of an incompressible homogeneous (constant-density) fluid (e.g. Benton &
Clark 1974; Zandbergen & Dijkstra 1987; Duck & Foster 2001). Also, much of the
geophysical research employs an incompressible Boussinesq-fluid model in which
density changes linearly with temperature (see Barcilon & Pedlosky 1967a, b; Sakurai
1969; Walin 1969; Homsy & Hudson 1971; Hyun, Fowlis & Warn-Varnas 1983). The
character of the steady Ekman layer over timescales much larger than the rotational
time (Ω∗−1) is qualitatively similar to both the constant-density model and the
Boussinesq-fluid model. For a Boussinesq fluid, the horizontal force balance is between
the Coriolis force and the viscous force in the Ekman layer, which is the case for a
constant-density fluid as well. This is easily explained by noting that, in general, the
lengthscale for the vertical temperature variation in the Boussinesq fluid is much larger
than the Ekman layer thickness. Also, the transient Ekman layer of a Boussinesq
fluid is formed at t∗ ∼ O(Ω∗−1). In addition, the energy equation is reduced to a pure
diffusion equation; therefore, the thermal diffusion effect is felt across the horizontal
Ekman boundary layer (e.g. Holton 1965; Benton & Clark 1974; St-Maurice &
Veronis 1975; Hyun 1984).

In contrast to these features of an incompressible flow, the distinctive aspects of
a rapidly rotating compressible fluid flow will be explored. The principal difference
stems from the fact that the compressible fluid motion in the radial direction gives
rise to the generation (removal) of heat due to the compression (expansion) work. The
velocity and temperature fields are strongly coupled in rapidly rotating compressible-
fluid flows. This important flow character has been pointed out, in a piecemeal fashion,
in a few studies (e.g. Riley 1967; Sakurai & Matsuda 1974; Matsuda & Hashimoto
1976; Harada 1979; Hyun & Park 1992; Lindbald, Bark & Zahrai 1994).

The present effort aims to provide a unified and systematic theoretical analysis of
the transient Ekman layer of a compressible fluid. By developing a detailed energy
balance formulation for a control volume, this study will explore the two evolutionary
processes of energy transport mechanisms. One is akin to that of an incompressible
fluid, in which the O(1) radial motions and the concomitant O(E1/2) Ekman-pumping
take place. The other is unique to a compressible fluid, i.e. the energy transport by
diffusion in the vertical direction across the Ekman layer. It will be shown that a
combination of flow variables, e[≡ T + 2α2rv], which will be termed the energy flux
content, is effective in portraying the evolution of diffusive energy transport. The
relevant governing equations will be scrutinized for the above two types of energy
transfer mechanisms.
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Figure 1. Coordinate system.

2. The mathematical model
The formulation is based on the cylindrical coordinate system (r∗, θ∗, z∗) with

velocity components (u∗, v∗, w∗), rotating at rotation rate Ω∗ (see figure 1). The
conventional gravitational acceleration is dominated by the rotation effect and,
therefore, is ignored. In the initial-state rigid-body rotation at temperature T ∗

00, the
radial density profile of the fluid is (e.g. Bark, Meijer & Cohen 1978; Park & Hyun
1998)

ρ∗
00(r

∗) = ρ∗
00(r0H

∗) exp

[
γM2

2

(
r2 − r2

0

)]
, (1)

and the initial-state pressure distribution is

p∗
00(r

∗) = ρ∗
00(r

∗)RT ∗
00. (2)

In the above, subscript ∗ denotes dimensional quantities, subscript 00 refers to the
basic state, r ≡ r∗/H ∗, M ≡ Ω∗H ∗/(γRT ∗

00)
1/2 is the system March number, γ the

ratio of specific heats, and R the gas constant. It is implicit in the formulation that
M ∼ O(1) such that the fluid compressibility is dominant.

Departures from the above initial-state isothermal rigid-body rotation are obtained
by imposing small thermal and/or mechanical perturbations on the disk. The
relative strength of perturbation is measured by the Rossby number ε ≡ T ∗p/T ∗

00

(or U ∗p/(Ω∗H ∗)), where T ∗p (or U ∗p) indicates the magnitude of the thermal (or
mechanical) perturbation at the disk. It follows that, for ε � 1, as viewed from the
frame rotating at Ω∗, the dependent variables are O(ε). Neglecting the O(ε2) and
higher-order terms, the linearized governing equations in dimensional form are (e.g.
Bark et al. 1978; Morberg, Hultgren & Bark 1984)

∂ρ∗

∂t∗ +
1

r∗
∂

∂r∗ (r∗ρ∗
00u

∗) + ρ∗
00

∂w∗

∂z∗ = 0, (3)

ρ∗
00

(
∂u∗

∂t∗ − 2Ω∗v∗
)

− Ω∗2r∗ρ∗ = −∂p∗

∂r∗ + µ∗
[(

∇2 − 1

r∗2

)
u∗ +

(
1

3
+ β

)
∂

∂r∗ (∇ · V ∗)

]
,

(4)
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ρ∗
00

(
∂v∗

∂t∗ + 2Ω∗u∗
)

= µ

(
∇2 − 1

r∗2

)
v∗, (5)

ρ∗
00

∂w∗

∂t∗ = −∂p∗

∂z∗ + µ

[
∇2w∗ +

(
1

3
+ β

)
∂

∂z∗ (∇ · V ∗)

]
, (6)

ρ∗
00Cp

∂T ∗

∂t∗ − ∂p∗

∂t∗ − Ω∗2r∗ρ∗
00u

∗ = k∇2T ∗, (7)

p∗ = R(ρ∗
00T

∗ + ρ∗T ∗
00). (8)

In the above, Cp denotes the specific heat at constant pressure, β the ratio of expansion
and shear viscosities, µ the coefficient of shear viscosity, k the coefficient of thermal
conductivity.

The initial conditions are

at t∗ = 0, u∗ = v∗ = w∗ = T ∗ = 0, (9a)

and the boundary conditions at the disk are

at z∗ = 0, u∗ = w∗ = 0, v∗ = V ∗
W (t∗, r∗), T ∗ = T ∗

W (t∗, r∗), (9b)

in which V ∗
W (t∗, r∗) and T ∗

W (t∗, r∗) are the functional forms of the imposed per-
turbations.

As shown in (9b), in order to deal with general situations, the external perturbations
V ∗

W and T ∗
W are assumed to be arbitrary functions of t∗ and r∗. However, it is noted that

certain restrictions are needed in this context. It is recalled that the formation time τ ∗

and thickness δ∗
H of the Ekman boundary layer are, respectively, τ ∗ ∼ O(Ω∗−1) and

δ∗
H ∼ O(E1/2H ∗). It then follows that, in order for the linear Ekman layer equations

to be applicable, the rates of temporal variation and of spatial variation of V ∗
W and

T ∗
W should be smaller than O(Ω∗) and O(δ∗−1

H ). The first implies that the period of
temporal variation of the external perturbation at the disk should be larger than
the Ekman layer formation time. Similarly, the second indicates that, for E � 1, the
Ekman layer characteristics prevail, i.e. ∂Φ/∂z∗ � ∂Φ/∂r∗, where Φ denotes a flow
variable in the Ekman layer.

Finally, in the present study consideration is limited to axisymmetric flows, as
expounded by Morberg et al. (1984) for the stability condition.

3. Energy transfer in the transient Ekman layer
Consider the horizontal layer adjacent to the disk, with the local coordinates

and control volume as displayed in figure 2. The initial-state rigid-body rotation is
described by (1) and (2). If a small perturbation (ε � 1) is applied to the rotating disk,
the flow fields in the inertial coordinate frame are expressed, in dimensional form, as

V ∗
inertial = Ω∗r∗eθ + ε

(
u

∗p

inertialer + v
∗p

inertialeθ + w
∗p

inertialez

)
, (10a)

ρ∗ = ρ∗
00 + ερ∗p, (10b)

T ∗ = T ∗
00 + εT ∗p, (10c)

p∗ = p∗
00 + εp∗p. (10d)

In the above, (er , eθ , ez) represent the unit vectors in the (r, θ, z) directions, superscripts
∗ and p denote, respectively, the dimensional and the perturbation quantities, and
subscripts inertial and 00 stand for the inertial frame and the initial basic-state,
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Figure 2. Schematic of the control volume in the Ekman layer.

respectively. It follows that, if (10a) is recast in the frame rotating with angular
velocity Ω∗, the result is

V ∗
inertial = r∗Ω∗eθ + V ∗

rotating,
(11)

where V ∗
rotating = ε

(
u

∗p
rotatinger + v

∗p
rotatingeθ + w

∗p
rotatingez

)
,

and subscript rotating denotes the rotating coordinates. From the above considera-
tions, the perturbation velocities in the two frames are

u
∗p
rotating = u

∗p

inertial, v
∗p
rotating = v

∗p

inertial, w
∗p
rotating = w

∗p

inertial. (12)

Now, a detailed examination is made of the balance of energy transport in the
horizontal boundary layer on the disk. It is convenient to use the inertial frame. The
small control volume consists of the annular zone in the horizontal boundary layer
with inner and outer radii (r∗, r∗ +dr∗), as shown in figure 2. The three components
of transport of energy into and out of the control volume are: (i) the rate of
mechanical work done by viscous friction at the control surface, δW ∗

f ; (ii) the rate of
heat transfer due to the temperature gradient at the control surface, δQ∗; and (iii)
the energy flux carried by the fluid motion across the control surface, δW ∗

p . In the
ensuing discussion, the thickness δ∗

H of the horizontal boundary layer is very small, i.e.
δ∗
H ∼ O(E1/2H ∗) � H ∗ (see e.g. Sakurai & Matsuda 1974; Harada 1979). Furthermore,

it is noted that ε � 1 and the higher-order terms are ignored.
The mechanical work is done by the viscous frictional stress at the control

surface. This stems from the viscous stress at the boundary of the control volume
[n∗ · (∇V ∗

inertial + {∇V ∗
inertial}T )]control surface, which is caused by the perturbation given to

the disk. In the above, n∗ is the outward unit vector normal to the control surface S∗

as shown in figure 2, and T stands for transposition. Therefore, the rate of mechanical
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work, δW ∗
f , transferred from the exterior to the interior of control volume is

δW ∗
f = µ

∮
S∗

[n∗ · (∇V ∗
inertial + {∇V ∗

inertial}T )] · V ∗
inertial dS∗. (13)

Using ∣∣∣∣∂v
∗p
rotating

∂r∗

/
∂v

∗p
rotating

∂z∗

∣∣∣∣∼ O
(
E1/2

)
and (12), and substituting (10a) into (13), the integration can be approximated as

δW ∗
f

∼= µε

[(
∂v

∗p
rotating

∂z∗

)
z∗=z∗

−
(

∂v
∗p
rotating

∂z∗

)
z∗=0

]
(Ω∗r∗)A∗ + O

(
ε2, εE1/2

)
, (14)

where z∗ indicates an arbitrary axial position within the horizontal boundary layer,
µ the coefficient of shear viscosity, and A∗ = 2πr∗ dr∗ (see figure 2).

The heat transfer takes place due to the inequality in temperature across the control
surface, i.e. the rate of heat transfer δQ∗ transferred from the exterior to the interior
of control volume, is

δQ∗ = εk

∮
S∗

n∗ · ∇T ∗ dS∗.

The rate of heat transfer through the horizontal surface of the control volume
is an order-of-magnitude larger than through the vertical surface, i.e. (∂T ∗/∂r∗)/
(∂T ∗/∂z∗) ∼ O(E1/2). Therefore, the above integration can be approximated as

δQ∗ ∼= εk

[(
∂T ∗p

∂z∗

)
z∗=z∗

−
(

∂T ∗p

∂z∗

)
z∗=0

]
A∗ + O

(
εE1/2

)
, (15)

in which k is the coefficient of thermal conductivity.
The energy flux δW ∗

p occurs by way of mass transport by the velocity normal to
the control surfaces. The fluid energy per unit volume is written as

h∗ =
V ∗

inertial · V ∗
inertial

2
+ CpT ∗

∼=
(Ω∗r∗)2

2
+ CpT ∗

00 + O(ε).

Thus, the energy flux to the exterior from the interior of the control volume is

δW ∗
p =

∮
S∗

(V ∗
inertial · n∗)h∗ dS∗. (16)

Upon placing (10a, c) and (12) into (16), the above integration for the control surface
in figure 2 is approximately written as

δW ∗
p = ε

∫ z∗

0

[
h∗ρ∗

00u
∗p
rotating

]
r∗=r∗+dr∗/2

2π

(
r∗ +

dr∗

2

)
dz∗

− ε

∫ z∗

0

[
h∗ρ∗

00u
∗p
rotating

]
r∗=r∗−dr∗/2

2π

(
r∗ − dr∗

2

)
dz∗

+ ε

∫ r∗+dr∗/2

r∗−dr∗/2

[
h∗ρ∗

00w
∗p
rotating

]
z∗=z∗2πr∗ dr∗ + O(ε2), (17)
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in which the first term on the right-hand side is the energy flux across the right
vertical control surface, the second term is the energy flux across the left vertical
control surface, and the third term the energy flux through the top horizontal control
surface. For the integration of the third term on the right-hand side of (17), consider
the continuity equation:

[
r∗ρ∗

00w
∗p
rotating

]
z∗=z∗ = −

∫ z∗

0

r∗ ∂ρ∗p

∂t∗ dz∗ −
∫ z∗

0

∂
(
r∗ρ∗

00u
∗p
rotating

)
∂r∗ dz∗. (18)

Substituting (18) into the third term on the right-hand side of (17), and integrating
by parts gives

ε

∫ r∗+dr∗/2

r∗−dr∗/2

[
h∗ρ∗

00w
∗p
rotating

]
z∗=z∗2πr∗ dr∗

= − ε

∫ z∗

0

[
h∗ρ∗

00u
∗p
rotating2πr∗]

r∗=r∗+dr∗/2
dz∗

+ ε

∫ z∗

0

[
h∗ρ∗

00u
∗p
rotating2πr∗]

r∗=r∗−dr∗/2
dz∗

+ ε

∫ z∗

0

∫ r∗+dr∗/2

r∗−dr∗/2

Ω∗2r∗2ρ∗
00u

∗p
rotating2π dr∗ dz∗

− ε

∫ z∗

0

∫ r∗+dr∗/2

r∗−dr∗/2

h∗r∗ ∂ρ∗p

∂t∗ 2π dr∗ dz∗ + O(ε2). (19)

From (17) and (19), the rate of energy flux δW ∗
p becomes

δW ∗
p

∼= ε

∫ z∗

0

Ω∗2r∗ρ∗
00u

∗p
rotating dz∗A∗

− ε

∫ z∗

0

∫ r∗+dr∗/2

r∗−dr∗/2

h∗r∗ ∂ρ∗p

∂t∗ 2π dr∗dz∗ + O(ε2, ε(dr∗)∗). (20)

For further manipulation of (20), the θ-momentum equation in the rotating frame
(see (5)) is rewritten, in dimensional form, as

2ρ∗
00Ω

∗u
∗p
rotating = −ρ∗

00

∂v
∗p
rotating

∂t∗ + µ

(
∂2v

∗p
rotating

∂r∗2
+

∂2v
∗p
rotating

∂z∗2
−

v
∗p
rotating

r∗2

)
. (21)

Noting that the thickness of the horizontal boundary layer is δ∗
H ∼ O(E1/2H ∗),

estimations can be made of the magnitudes of the terms of (21):∣∣∣∣∂
2v

∗p
rotating

/
∂r∗2

∂2v
∗p
rotating

/
∂z∗2

∣∣∣∣∼ O(E),

∣∣∣∣ v
∗p
rotating

/
r∗2

∂2v
∗p
rotating

/
∂z∗2

∣∣∣∣∼ O(E).

As a result, (21) is reduced to

2ρ∗
00Ω

∗u
∗p
rotating

∼= − ρ∗
00

∂v
∗p
rotating

∂t∗ + µ
∂2v

∗p
rotating

∂z∗2
+ O(E). (22)
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Substituting (22) into (20) yields

δW ∗
p

∼= ε
µ

2

[(
∂v

∗p
rotating

∂z∗

)
z∗=z∗

−
(

∂v
∗p
rotating

∂z∗

)
z∗=0

]
(Ω∗r∗)A∗

− ε
1

2

∫ z∗

0

ρ∗
00

∂v
∗p
rotating

∂t∗ dz∗(Ω∗r∗)A∗ − ε

∫ z∗

0

h∗ ∂ρ∗p

∂t∗ dz∗A∗

+ O(ε2, εE, ε(dr∗)2). (23)

It is worth noting that the sum of the first and second terms on the right-hand
side of (23) for δW ∗

p is the same as the rate of pressure work. In the present analysis,
since the control volume is fixed in space, no explicit mention of the rate of pressure
work is made. In the Lagrangian formulation considering a material volume, the term
representing the rate of pressure work appears explicitly. The work is done by the
pressure gradient when the fluid particle undergoes radial motions in the pressure
field which has been set by the initial-state pressure distribution of (2), i.e.

rate of pressure work ∼= ε

∫ δ∗
H

0

u
∗p
rotating

dp∗
00

dr
dz∗A∗.

It is a straightforward task to verify that substituting (2) and (22) into the above
equation leads to the same result.

The rate of change of the total energy in the control volume, ∂E∗/∂t∗, is

∂E∗

∂t∗ =

∫ z∗

0

∫ r∗+dr∗/2

r∗−dr∗/2

∂(h∗ρ∗)

∂t∗ 2πr∗ dr∗ dz∗

∼= ε

∫ z∗

0

ρ∗
00

(
Ω∗r∗ ∂v

∗p
rotating

∂t∗ + C∗
p

∂T ∗p

∂t∗

)
dz∗A∗

+ ε

∫ z∗

0

h∗ ∂ρ∗p

∂t∗ dz∗A∗ + O(ε2, ε(dr∗)2). (24)

In order to fulfil the energy conservation in the above control volume, the following
relation should be satisfied:

∂E∗

∂t∗ = δW ∗
f + δQ∗ − δW ∗

p. (25)

Under the assumptions that ε � 1, E � 1, dr∗ � 1, substituting (14), (15), (23) and
(24) into (25) produces∫ z∗

0

ρ∗
00

(
Ω∗r∗

2

∂v
∗p
rotating

∂t∗ + C∗
p

∂T ∗p

∂t∗

)
dz∗ =

∫ z∗

0

∂2e∗

∂z∗2
dz∗, (26)

in which

e∗ = µ
Ω∗r∗

2
v

∗p
rotating + kT ∗p. (27)

By combining the foregoing mathematical developments, it is obvious that, in the
time-dependent Ekman boundary layer,

ρ∗
00

(
Ω∗r∗

2

∂v
∗p
rotating

∂t∗ + Cp

∂T ∗p

∂t∗

)
=

∂2e∗

∂z∗2
. (28)

From (28), in the steady state, e∗ is independent of z∗, i.e. the value of e∗ in the
Ekman boundary layer is uniform in z∗, maintaining the value of e∗ at the disk. It



Energy transfer in the Ekman layer of a compressible fluid 221

then follows that

e∗[≡ 1
2
Ω∗r∗µv∗

rotating + kT ∗] = 1
2
µΩ∗r∗V ∗

W + kT ∗
W . (29)

In the above, as indicated previously, V ∗
W and T ∗

W respectively stand for the perturbed
azimuthal velocity and the perturbed temperature at the disk viewed in the rotating
frame. Clearly, in the steady Ekman layer case, V ∗

W and T ∗
W are not functions of

time. The newly found combination of flow variables, e∗ in (27), will for convenience
be termed the energy flux content. The significance of this variable grouping will
be obvious in theoretical analyses of the fundamental flow properties of a rapidly
rotating compressible fluid. The energy flux content e∗ turns out to be a powerful
and effective tool in the analysis of energy transport in the Ekman layer as well as in
general dynamical considerations for a rotating compressible fluid.

A rudimentary form of the energy flux content (e∗) was pointed out earlier in
Sakurai & Matsuda (1974) and Wood & Morton (1980), although not in a direct and
explicit manner.

In the next section of this paper, the concrete physical meaning and the usefulness
of e∗ will be elaborated. This shows a close correlation between the energy flux
content and the variables in previous papers.

4. The physical implications of e∗

The physical meaning of the energy flux content e∗ will now be clarified. For this
purpose, a non-dimensional formulation will be introduced. A similar non-dimensional
variable grouping, T + 2α2rv, in which α2 ≡ σ (γ − 1)M2/4r2

0 , emerged in the steady-
state analysis of gas centrifuge flows (see (3.20) of Sakurai & Matsuda 1974). Also, in
the early analysis using the Onsager pancake model, another similar variable grouping,
h(≡ θ + (S − 1)ω) (see p. 5 in Wood & Morton 1980), was obtained. This variable
grouping was derived in the course of extensive mathematical developments of the
above theoretical expositions. In the present paper, an effort is made to delineate
the signficance and physical interpretation of this variable grouping, the energy flux
content e∗.

As asserted previously, in the steady state, the energy flux content e∗ is uniform in
the z∗-direction over the entire thickness of the horizontal boundary layer. As shown
in (28), the perturbation imposed at the disk propagates in the z∗-direction in a one-
dimensional diffusion-type process. To gain a clearer picture, non-dimensionalization
is implemented (e.g. Hultgren, Meijer & Bark 1981; Park & Hyun 1998):

r = r∗/H ∗,

t = t∗Ω∗,

v = v
∗p
rotating

/
Ω∗H ∗,

T = T ∗p/T ∗
00,

ρ00 = ρ
∗p

00

/
ρ∗

00(r0H
∗).

Then, (28) reduces to

ρ00

∂

∂t
(σT + 2α2rv) = E

∂2e

∂z2
. (30)

In the above, σ ≡ µCp/k is the Prandtl number, and e[≡ e∗/(kT ∗
00)] ≡ T + 2α2rv is

the non-dimensional energy flux content. It follows that, if σ =1.0, the energy flux
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content e satisfies the one-dimensional diffusion equation, i.e.

ρ00

∂e

∂t
=

∂2e

∂η2
, (31)

in which η denotes the boundary-layer coordinate, η ≡ z/E1/2. Equation (31) demon-
strates that, when a perturbation is given to the disk, the disturbance propagates in
the η-direction in a one-dimensional diffusion process. In the steady state, after a
sufficient time has elapsed, therefore, the energy flux content e becomes uniform in
the η-direction over the thickness of the horizontal boundary layer. This finding is
consistent with the prior observation of Sakurai & Matsuda (1974), which showed
that, in the steady horizontal boundary layer,

T̃ + 2α2rṽ = 0, (32)

in which the tilde represents the boundary-layer variable in the boundary-layer
matching method.

It is of interest to note that the above-described energy flux content e is uniform
across the steady Stewartson layer of a compressible rotating flow. (The Stewartson
layer forms on the cylinder sidewall which is parallel to the rotation axis.) This has
been pointed out in a number of different contexts (e.g. Bark & Bark 1976; Matsuda
& Hashimoto 1976; Park & Hyun 1997, 1998). It may suggest the possibility of
an energy transfer mechanism in the transient Stewartson layer. However, detailed
discussions on the Stewartson layer are beyond the scope of the present paper, and
they will not be pursued here.

A note is in order on the case when the disk wall is adiabatic, i.e. (∂T̃ /∂η)η =0 = 0.
It then follows from the formulation of (32) that (∂ẽ/∂η)η =0 = 0, and, subsequently,
(∂ṽ/∂η)η = 0 = 0. This implies that, for (∂ṽ/∂η)η = 0 = 0, no Ekman layer flow of ṽ ∼ O(1)
at η ∼ O(1) can exist. This leads to the conclusion that, for an adiabatic disk wall, a
much weaker flow of ṽ ∼ O(E1/2) at η ∼ O(1) exists. This finding is in line with the
results of preceding studies (e.g. Matsuda & Hashimoto 1976; Bark & Hultgren 1979;
Lindbald et al. 1994). Furthermore, the present discussion reinforces the usefulness of
the energy flux content e in deducing physical rationalizations of the flow behaviour.

The physical meaning of the energy flux content e is now illuminated in further
detail. For a compressible fluid, if a thermal (or mechanical) perturbation is imposed
on the disk, energy transport from the disk to the fluid in the z-direction, as is evident
in (30) and (31), takes place. It is important to note that the energy thus transported
to the fluid represents only a portion of the energy which was originally supplied to
the disk from the exterior. This argument is obvious by working with (28) and (29).
Suppose that, for the fluid at the initial-state isothermal rigid-body rotation (T ∗ = T ∗

00,
v∗

inertial = r∗Ω∗), a mechanical perturbation (εV ∗
W ) and/or a thermal perturbation (εT ∗

W )
is imposed on the horizontal disk. In response to this, the perturbed mechanical energy
(PME) and the perturbed thermal energy (PTE) per unit volume of the fluid in the
boundary layer are, respectively,

PME = 1
2
(ρ∗

00 + ερ∗p)(r∗Ω∗ + εv∗
rotating)

2 − 1
2
ρ∗

00(r
∗Ω∗)2

� ερ∗
00(r

∗Ω∗)v∗p
rotating︸ ︷︷ ︸

I

+ ε 1
2
ρ∗p(r∗Ω∗)2︸ ︷︷ ︸

II

+O(ε2), (33)

PTE = Cp(ρ∗
00 + ερ∗p)(T ∗

00 + εT ∗p) − Cpρ∗
00T

∗
00

� εCpρ∗
00T

∗p︸ ︷︷ ︸
III

+ εCpρ∗pT ∗
00︸ ︷︷ ︸

IV

+O(ε2). (34)
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In view of (28), (33) and (34), the left-hand side of (28) denotes the temporal
rate of change of ( 1

2
× I + II), which is a portion of the total perturbed energy

(= PME +PTE). The right-hand side of (28) indicates the diffusion rate of the energy
flux content e∗. For σ = 1.0, 1

2
× I + III = e∗; this implies that (31) is the equation

describing the temporal rate of change of e∗. Note, again, that e∗ represents only a
portion of the total perturbed energy. In summary, in the Ekman layer flow of a
rapidly rotating compressible fluid, only a portion of the energy that was supplied at
the disk is transferred to the fluid in the z∗-direction in a one-dimensional diffusion
process. It is asserted here that the amount of the energy thus transported is effectively
described by the physical variable, e∗.

On the other hand, the remainder of the energy, i.e. ( 1
2

× I+ II+ IV), is used, in the
form of horizontal energy flux, to give rise to the horizontal flows. This aspect will be
further clarified in the ensuing discussion. Now, specific evaluations will be made of
the magnitudes of the energy diffused in the z∗-direction and of the horizontal energy
flux.

For the control volume of figure 2, integration is performed for the PME and PTE
of (33) and (34). Upon taking the time derivative of these integrated quantities, the
temporal rate of change of the total perturbed energy, i.e. ∂E∗/∂t∗ of (24), is obtained.
Also, the right-hand side of (24) is rearranged to express ∂E∗/∂t∗ in two parts:

∂E∗

∂t∗
∼=

∂E∗
1

∂t∗ +
∂E∗

2

∂t
, (35)

in which

E∗
1 = ε

∫ z∗

0

ρ∗
00

(
1
2
Ω∗r∗v

∗p
rotating + CpT ∗p

)
A∗ dz∗, (36)

E∗
2 = ε

∫ z∗

0

(
1
2
ρ∗

00r
∗Ω∗v

∗p
rotating + h∗ρ∗p

)
A∗ dz∗. (37)

In the above, E∗
1 and E∗

2 are, respectively, equal to the volume integration of 1
2

×I+III

and 1
2

× I + II + IV.
Upon substituting (27) into (26) and integrating, one obtains, in view of (14) and

(15),

∂E∗
1

∂t∗ = 1
2
δW ∗

f + δQ∗. (38)

Also, from (14) and (23),

∂E∗
2

∂t∗ = 1
2
δW ∗

f − δW ∗
p. (39)

In the light of the earlier considerations of (28), (31) and (32), equation (38) for
∂E∗

1/∂t∗ is concerned with the diffusion in the z∗-direction in the horizontal boundary
layer. Equation (39) for ∂E∗

2/∂t∗, on the other hand, expresses the horizontal energy
flux. (Note that (39) can also be derived directly from (14) and (15).) The present
developments on the behaviour of a rapidly rotating compressible fluid, in response to
the given perturbation at the disk, can be summarized as follows (i) Part ( 1

2
δW ∗

f +δQ∗)
of the externally supplied energy flux is transported in a one-dimensional-like diffusion
process in the z∗-direction to the far field across the horizontal boundary layer. In the
steady-state limit, the energy flux content e∗ is axially uniform at an arbitrary radial
location r∗ = r∗. (ii) The remaining part, ( 1

2
δW ∗

f ), of the supplied energy flux is used
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to induce the horizontal energy flux (δW ∗
p), which causes the horizontal flows, and to

contribute to the storage of energy (∂E∗
2/∂t∗) in the boundary layer.

It is a straightforward matter to show that, in the steady-state limit, from (38) and
(39),

1
2
δW ∗

f = −δQ∗, (40)

1
2
δW ∗

f = δW ∗
p. (41)

The above equations indicate that half of the mechanical energy flux, 1
2
δW ∗

f , delivered
from the disk to the fluid is recovered at the disk in the form of the rate of thermal
energy (δQ∗). The remaining mechanical energy flux from the disk ( 1

2
δW ∗

f ) is used to
maintain the steady-state horizontal boundary layer flow.

To elaborate the physical implications discussed above, a specific example is
considered. Suppose that, at t =0, a mechanical perturbation (VW ) and a thermal
perturbation (TW ) of time-invariant form are imposed on the disk. The energy flux
content e at the disk is

e(t, r, η = 0) = TW + 2α2rVW , (42)

and, at the initial state t = 0, the energy flux content e in the interior fluid is

e(t = 0, r, η > 0) = 0. (43)

Therefore, the solution for e is obtained from the governing equation (31), subject to
the boundary and initial conditions, i.e. (42) and (43):

e(t, r, η) = (TW + 2α2rVW )erfc

(
η

2
√

t

)
. (44)

It follows from (44) that, in the large-time limit, e(t → ∞, r, η) = TW + 2α2rVW in the
entire flow field of the Ekman layer. Note that, in the region far away from the disk
(η � 1), the viscous effect is small, and the flow approaches the thermal wind relation,
v = 1

2
rT (see e.g. Sakurai & Matsuda 1974; Matsuda & Hashimoto 1976; Harada

1979). Consequently, at the edge of Ekman boundary layer, the temperature (T ) and
the azimuthal velocity (v) tend to, respectively,

T (t → ∞, r, η � 1) =
1

1 + α2r2
(TW + 2α2rVW ), (45)

v(t → ∞, r, η � 1) =
r

2(1 + α2r2)
(TW + 2α2rVW ). (46)

It is a useful exercise to re-work the above example for the case of an incompressible
Boussinesq fluid. The governing equation in this case is a simple heat conduction
equation. Furthermore, in the inviscid interior region, the thermal wind relation
v = 1

2
rT prevails (see e.g. Barcilon & Pedlosky 1967a, b; Homsy & Hudson 1971).

Therefore,

T (t, r, η) = TWerfc

(
η

2
√

t

)
, (47)

T (t → ∞, r, η � 1) = TW, (48)

v(t → ∞, r, η � 1) =
r

2
TW . (49)

It is evident that, by comparing (44)–(46) with (47)–(49), the energy flux content
e for a compressible-fluid flow plays a role analogous to the temperature T for an



Energy transfer in the Ekman layer of a compressible fluid 225

incompressible Boussinesq-fluid flow. As emphasized previously, the energy transfer
from the disk to the interior fluid across the horizontal boundary layer is governed
by thermal diffusion for an incompressible Boussinesq fluid. For a compressible fluid,
the situation is more complex: the propagation of the perturbation takes a form
of a diffusion process of the energy flux content e, which is a combination of the
temperature and velocity fields.

As can be seen from (45)–(46), it is important to recognize that, in the steady state,
the compressible-fluid flow at the boundary-layer edge (η � 1) is not in isothermal
rigid-body rotation. The implication is that, since the far field of the disk (z → ∞) is in
isothermal rigid-body rotation, there exists an outer interior flow region of z ∼ O(1).
Matching between the Ekman layer flow at z ∼ O(E1/2) and the far-field solution
(z → ∞) is effected in this region. The flow in this matching zone is typified by the
thermal wind relation v = 1

2
rT . The governing equations and the particular solution

for v and T in the outer interior flow region were given previously by Sakurai &
Matsuda (1974) and Bark & Bark (1979).

The physical meaning of the outer interior flow region is discussed below. An
infinite fluid is considered, which is in rigid-body rotation (at Ω∗) with an infinite
disk. In the case of an incompressible homogeneous fluid, when the rotation rate of
the disk is suddenly increased from Ω∗ to Ω∗ + �Ω∗, the flow near the disk can be
described by the Ekman layer solution when ε = �Ω∗/Ω∗ � 1 (see Greenspan 1968).
In the far field of the disk, the steady flow is in rigid rotation at Ω∗. Near the disk,
the Ekman layer of thickness O(E1/2) is present, in which the outer flow rotating at
Ω∗ and the disk rotation at Ω∗ + �Ω∗ are matched. It is noted that the disturbance
in angular momentum, which is caused by the change in rotation rate of the disk
(Ω∗ → Ω∗ + �Ω∗), is transferred to the z-direction by momentum diffusion. At the
same time, axial velocity toward the disk is induced by the Ekman pumping, which
offsets the momentum diffusion in the z-direction at a distance O(E1/2) from the disk.
In summary, for an incompressible homogeneous fluid, with only an Ekman layer
of thickness O(E1/2), the interior fluid outside the Ekman layer can maintain the
original rigid-body rotation at Ω∗.

A different picture emerges in the case of a compressible fluid. When the rotation
rate of the disk is abruptly altered (Ω∗ → Ω∗+�Ω∗), the increased angular momentum
near the disk causes a radially outward flow u. Against the background of the basic
pressure, which increases exponentially in the radially outward direction, as shown
in (2), this radial motion induces a temperature increase by compression work. In
short, the external disturbance imposed at the disk gives rise to both momentum
diffusion and thermal diffusion in the z-direction. Also, the temperature field shows a
dependence on the radial distance. Summarizing these observations for a compressible
fluid, by having only the Ekman layer, it is not possible to effecte the matching
between the far-field (isothermal rigid-body rotation, v = T = 0) and the externally
imposed disk wall condition. This can be easily understood by simply noting that
the temperature field has a strong r-dependence. Consequently, a portion of the total
energy imparted to the disk is transported to the outer interior flow region, which is
characterized by z ∼ O(1) and ∂φ/∂z ∼= ∂φ/∂r , where φ denotes a flow variable (see
Sakurai & Matsuda 1974; Bark & Bark 1979).

The results of the present analysis are consistent with prior studies. For the case
of thermally driven flow, i.e. TW = 1, VW = 0, (45)–(46) recover the results of (3.27)
of Matsuda & Sakurai (1974). For the case of mechanically driven flow, i.e. VW = r ,
TW = 0, (45)–(46) lead to the same result as in (58) and (60) of Harada (1979) (as
τ → ∞, η � 1).
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Figure 3. Schematic of energy transport in the Ekman layer: (a) transient state and
(b) steady state.

The principal result of the present analysis is that, for a compressible fluid, the
momentum diffusion and thermal diffusion across the Ekman layer in the z-direction
do not arise independently. The transport process can be effectively described by
using the energy flux content, e[≡ e∗/(kT ∗

00)] ≡ T + 2α2rv.
The analysis of energy transport in the present study provides further physical

insight. For simplicity, only the case of a mechanical (thermal) perturbation VW = r ,
TW = 0 (VW = 0, TW = 1) is considered. From (38) and (39), it is seen that the evolu-
tionary process to the large-time steady state has several stages: (i) At t = 0, the
mechanical (thermal) perturbation VW (TW ) is imposed at the disk. The momentum
(thermal) diffusion in the axial direction from the disk commences. (ii) Due to the
axial motion of (i), flow in the radial direction u > 0 (u < 0) is induced. (iii) The radial
motions cause compression (expansion) because of the prevailing pressure gradient
(2) of the basic-state. (iv) Thus, a rise (drop) in temperature T > 0 (T < 0) takes
place. (v) The resultant momentum diffusion and thermal diffusion, as depicted by
the diffusion of the energy flux content e of (31), bring the fluid to the large-time
steady state. These scenarios are illustrated in figure 3(a).

It is important to recognize that, in the transient process, part of the mechanical
energy externally supplied to the disk is recovered at the disk in the form of thermal
energy, i.e. the increase in the temperature of the fluid. Also, as the steady state is
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approached, the diffusion into the interior vanishes. As shown in (40) and (41), half
of the mechanical energy supplied to the disk is reclaimed by the disk in the form of
thermal energy. The remaining half is used to maintain the horizontal boundary-layer
flow against the prevailing pressure gradient (see figure 3b).

5. Conclusions
A transient energy balance analysis has been performed for the transient

compressible Ekman layer. Flow is induced by imposing a mechanical and/or thermal
disturbance on a rapidly rotating disk in the initial basic state of isothermal rigid-body
rotation. The disturbance is a function of time and radial coordinate. The Ekman
and Rossby numbers are assumed to be very small.

There are two types of transient energy transfer from the rotating disk to the fluid:
(i) The first is a process similar to an incompressible Ekman layer, in which a half
of mechanical energy flux ( 1

2
δW ∗

f ) is transferred from the rotating disk to the fluid
in the development of Ekman layer flow. However, since temperature variations are
induced by the radial flow, the Ekman layer of a compressible fluid is more complex
than of an incompressible fluid. (ii) The other is a diffusion process. Part of the total
energy flux, i.e. ( 1

2
δW ∗

f + δQ∗), is transported across the Ekman layer into the interior
inviscid region. In this case, the energy transfer is governed by the one-dimensional
diffusion equation with the variable e∗ = 1

2
Ω∗r∗µ∗V ∗

W + k∗T ∗
W (in dimensional form),

or e = T + 2α2rv (in non-dimensional form), which is called the energy flux content.
Consequently, the energy flux content turns out to be a physically meaningful variable
which plays a role analogous to the temperature in a Boussinesq fluid.

In the steady state, the diffusion of energy flux content into the interior vanishes.
Half of the mechanical energy flux ( 1

2
δW ∗

f ) supplied to the disk is reclaimed by the

disk in the form of thermal energy flux (δQ∗) i.e. δQ∗ = − 1
2
δW ∗

f . The remaining half of

the mechanical energy flux ( 1
2
δW ∗

f ) is used to maintain the horizontal boundary-layer

flow against the prevailing pressure gradient, i.e. 1
2
δW ∗

f = δW ∗
p .
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